Date of Publishing:
January 15, 2015

2015 © Anderwald + Grond

The “Turning Point” of Paradoxes

Paradoxes are comparable with aporias as explained in Aristotle’s book on Topics (cf. “aporia”). In another text, Aristotle concretises the problem of two opposite motions in one specific moment that is “numerically one” and “theoretically two”.

Aristotle, Physics, Book VIII, chapter 8, 262a – 262b ff.:“We may start as follows: we have three points, starting-point, middle-point, and finishing-point, of which the middle-point in virtue of the relations in which it stands severally to the other two is both a starting-point and a finishing-point, and though numerically one is theoretically two. We have further the distinction between the potential and the actual. So in the straight line in question any one of the points lying between the two extremes is potentially a middle-point: but it is not actually so unless that which is in motion divides the line by coming to a stand at that point and beginning its motion again: thus the middle-point becomes both a starting-point and a goal, the starting-point of the latter part and the finishing-point of the first part of the motion. This is the case e.g. when A in the course of its locomotion comes to a stand at B and starts again towards G: but when its motion is continuous A cannot either have come to be or have ceased to be at the point B: it can only have been there at the moment of passing, its passage not being contained within any period of time except the whole of which the particular moment is a dividing-point. To maintain that it has come to be and ceased to be there will involve the consequence that A in the course of its locomotion will always be coming to a stand: for it is impossible that A should simultaneously have come to be at B and ceased to be there, so that the two things must have happened at different points of time, and therefore there will be the intervening period of time: consequently A will be in a state of rest at B, and similarly at all other points, since the same reasoning holds good in every case. When to A, that which is in process of locomotion, B, the middle-point, serves both as a finishing-point and as a starting-point for its motion, A must come to a stand at B, because it makes it two just as one might do in thought. However, the point A is the real starting-point at which the moving body has ceased to be, and it is at G that it has really come to be when its course is finished and it comes to a stand.” (Emphasis added)


And further in 263b 15 – 264a 8:“Let us suppose a time ABG and a thing D, D being white in the time A and not-white in the time B. Then D is at the moment G white and not-white: for if we were right in saying that it is white during the whole time A, it is true to call it white at any moment of A, and not-white in B, and G is in both A and B. We must not allow, therefore, that it is white in the whole of A, but must say that it is so in all of it except the last moment G. G belongs already to the later period, and if in the whole of A not-white was in process of becoming and white of perishing, at G the process is complete. And so G is the first moment at which it is true to call the thing white or not white respectively.”